
Mergeable Types

Gowtham Kaki
Purdue University

KC Sivaramakrishnan
University of Cambridge

Samodya Abeysiriwardane
Purdue University

Suresh Jagannathan
Purdue University

Distributed applications often eschew strong consistency
and replicate data asynchronously to improve availability and
fault tolerance. However, programming under eventual con-
sistency is significantly more complex and often leads to oner-
ous programming model where inconsistencies must be han-
dled explicitly. We introduce vml, a programming model that
extends ML datatypes with mergeability à la version control
systems with the ability to define and compose distributed ML
computations around such data. Our OCaml implementation
instantiates mergeable types on Irmin, a distributed content-
addressible store to enable composable and highly-available
distributed applications.

1 A Replicated Counter

Consider a monotonic counter data type:

module Counter: sig
type t
val add: int → t → t
val mult: int → t → t
val read: t → int

end = struct
type t = int
let add x v = v + (abs x)
let mult x v = v * (abs x)
let read v = v

end

Observe that the library is written in an idiomatic func-
tional style, with no special reasoning principles needed to
realize desired functionality. As long as applications use the
library on a single machine, this implementation behaves as
expected. However, if the library is used in the context of a
more sophisticated application, say one whose computation
is distributed among a collection of machines, its behavior
can become significantly harder to understand. In particu-
lar, a distributed implementation might wish to replicate the
counter state on each replica to improve response time or fault
tolerance. Unfortunately, adding replication doesn’t come for
free. Attempting to update every replicated copy atomically
is problematic in the absence of distributed transaction sup-
port, which impose significant performance penalties. But,
without such heavyweight mechanisms, applying an Add op-
eration on one replica may not be instantaneously witnessed
on another, which may be in the process of simultaneously
attempting to perform its own Add or Mult action. Since Add

and Mult do not commute, this may result in divergence of
the counter state across various replicas.

Rather than viewing each operation in terms its effect on
the global state, can we formulate a more declarative inter-
pretation, directly in terms of the counter value maintained
by each replica? Since the counter is replicated, each local
operation can be thought of as yielding a new local version,
collectively producing a version tree, with one branch for each
replica. Every branch represents different (immutable) ver-
sions maintained by different replicas, with the state produced

by the computation performed over a counter on a replica
recorded along the replica’s local branch for the counter.
Now, to generate a globally consistent view of a counter, we
only need to define a merge operation that explains how to
combine two local versions to produce a new version that re-
flects both their states. This operation is defined not in terms
of replicas or other system-specific artifacts, but in terms of
the semantics of the datatype itself.

Framing replication as merging leads to a counter imple-
mentation that bears strong similarity to the original sequen-
tial one:

module Replicated_Counter = struct
include Counter
let merge lca v1 v2 =

lca + (v1 - lca) + (v2 - lca)
end

The role of lca (lowest common ancestor) here captures
salient history - the state resulting from the merge of two
versions derived from the same ancestor state should not un-
wittingly duplicate the contributions of the ancestor. This
interpretation of a replicated datatype is thus given in terms
of the evolution of a program state implicitly associated with
the different replicas that comprise a distributed application
with merge operations serving to communicate and reconcile
different local states.

2 Collaborative drawing

vml not only supports primitive data types but also algebraic
data types. This code snippet:

module type CANVAS = sig
type pixel = {r:char; g:char; b:char}
type tree =
| N of pixel
| B of {tl_t:tree; tr_t:tree; bl_t:tree; br_t:

tree}
type t = {max_x:int; max_y:int; canvas:tree}
type loc = {x:int; y:int}

val new_canvas: int → int → t
val set_px: t → loc → pixel → t
val get_px: t → loc → pixel
val merge: (*lca*)t → (*v1*)t → (*v2*)t → t

end

shows the signature of the Canvas application. Canvas repre-
sents a free-hand drawing canvas in terms of a tree of quad-
rants. A quadrant is either a leaf replica containing a single
pixel (an r-g-b tuple), or a tree of sub-quadrants, if the quad-
rant contains multiple pixels of different colors. Quadrants
are expanded into a tree structures as and when pixels are
colored. The representation is thus optimized for sparse can-
vases, such as whiteboards. The application supports three
simple operations: creating a new canvas, setting the pixel
at a specified coordinate, and returning the pixel at a given
coordinate.

1

Canvas lets multiple users collaborate on a canvas that is
conceptually shared among them. Under a shared-memory
abstraction, there would be a single copy of the canvas that
is updated concurrently by multiple clients; from the perspec-
tive of any single client, the canvas could change without any
explicit intervention. vml ascribes functional semantics to
sharing by letting each client work on its own version of the
state (the tree data structure in this example), later merging
concurrent versions on-demand.

vml requires a three-way merge function to merge concur-
rent versions of a drawing canvas that includes two concurrent
versions (v1 and v2), and their lowest common ancestor (lca)
- the version from which the two concurrent versions evolved
independently.

let color_mix px1 px2 : pixel =
let f = Char.code in
let h x y = Char.chr @@ (x + y)/ 2 in
let (r1,g1,b1) = (f px1.r,f px1.g,f px1.b) in
let (r2,g2,b2) = (f px2.r,f px2.g,f px2.b) in
let (r,g,b) = (h r1 r2,h g1 g2 ,h b1 b2) in
{r=r; g=g; b=b}

let b_of_n px =
B {tl_t=N px; tr_t=N px; bl_t=N px; br_t=N px}

let rec merge lca v1 v2 =
if v1=v2 then v1
else if v1=lca then v2
else if v2=lca then v1
else match (lca ,v1 ,v2) with
| (_,B _,N px2) → merge lca v1 @@ b_of_n px2
| (_, N px1 , B _) → merge lca (b_of_n px1) v2
| (N px, B _, B _) → merge (b_of_n px) v1 v2
| (B x, B x1, B x2) →

let tl_t = merge x.tl_t x1.tl_t x2.tl_t in
let tr_t = merge x.tr_t x1.tr_t x2.tr_t in
let bl_t = merge x.bl_t x1.bl_t x2.bl_t in
let br_t = merge x.br_t x1.br_t x2.br_t in
B {tl_t; tr_t; bl_t; br_t}

| (_, N px1 , N px2) →
(* pixels are merged by mixing colors *)
let px’ = color_mix px1 px2 in N px’

The merge function can make use of the pixel values of
the common ancestor to merge the pixel values on both the
canvases. For instance, if the color of a pixel in v1 is white,
and in v2 it is green, and its color in lca is white, then it
means that only v2 modified the color. Hence the pixel is
colored green in the merged canvas. On the other hand, if
the pixel is red in v1, then it means that both v1 and v2

have modified the color. In such case, an appropriate color-
mixing algorithm can be used to determine the color of pixel.
For instance, the pixel can be colored yellow - an additive
combination of red and green. The logic is illustrated below.

lca

v1 v2

merged

We have built several mergeable datatypes including lists,
ropes, etc, which can be freely composed together. That is, a
list of counters behaves like a mergeable list for append and
remove operations, with updates reconciled through counter
merge semantics.

0

4

26

1

35

7 0.38

105

0.29

2260.37

34.4

0.31

152

US-C
US-C

EU-W

EU-W

ASIA-NE
ASIA-NE

ASIA-E

ASIA-E

(a) Our experimental con-
figuration consists of an 8-
node ring cluster executing on
Google Cloud Platform. Edge
labels are inter-node latencies
in milliseconds.

1 2 3 4 5 6 7 8
Nodes

0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (o

ps
/s

)

0

25

50

75

100

La
te

nc
y

(m
se

c)

Throughput
Latency

(b) Scalability: Overall through-
put of the cluster and latency of
each operation.

Figure 1: vml performance evaluation.

3 Distributed Instantiation

The vml programming model is realized on top of Irmin [2],
an OCaml library database implementation that is part of
the MirageOS project [3]. Irmin provides a persistent multi-
versioned store with a content-addressable heap abstraction.
Simply put, content-addressability means that the address
of a data block is determined by its content. If the content
changes, then so does the address. Old content continues to
be available from the old address. Content-addressability also
results in constant time structural equality checks, which we
exploit in our mergeable rope implementation, among others.

Irmin provides support for distribution, fault-tolerance and
concurrency control by incorporating the Git distributed ver-
sion control [1] protocol over its object model. Indeed, Irmin
is fully compatible with Git command line tools. Distributed
replicas in vml are created by cloning a vml repository. Due
to vml’s support for mergeable types, each replica can oper-
ate completely independently, accepting client requests, even
when disconnected from other replicas, resulting in a highly
available distributed system.

While Irmin’s merge functions are defined over objects on
Irmin’s content-addressable heap, vml’s merge functions are
defined over OCaml types. We address this representational
mismatch with the help of OCaml’s PPX metaprogramming
support [4] to derive bi-directional transformations between
objects on OCaml and Irmin heaps. We also derive the vari-
ous serialization functions required by Irmin

We evaluated the performance of the system on a collab-
orative application that simulates concurrent editing of the
same document by several authors. The benchmark itself
was constructed with a list of ropes. The workload consists
of 4000 edit operations at random indices with 85% insertions
and 15% deletions. We evaluate the scalability of concurrent
editing application by increasing the cluster size from 1 to 8
(the 4 node ring cluster consists of nodes numbered 0 to 3),
with each node performing concurrent edits to the same docu-
ment. In each case, we measure the overall cluster throughput
and latency of each operation. The results are presented in
Figure 1b. The results show that the cluster throughput in-
creases linearly with the number of concurrent editors, while
the latency for each operation remains the same. This is be-
cause each operation is performed locally and does not require
synchronization with other nodes. The nodes remain avail-
able to accept requests even if the node gets disconnected.
Since the document type is mergeable, eventually when the
node comes back online, the updates are synchronized with
the cluster.

2

References

[1] Git: a free and open source distributed version control system,
2017. Accessed: 2017-01-04 10:12:00.

[2] 2016. Irmin: https://mirage.io/blog/introducing-irmin.

[3] A programming framework for building type-safe, modular sys-
tems, 2013. Accessed: 2017-01-03 12:21:00.

[4] PPX extension points, 2017. Accessed: 2017-01-04 10:12:00.

3

