
Necro: Animating Skeletons

Nathanaël Courant Enzo Crance Alan Schmitt

May 23, 2019

Abstract
necro is a tool that generates an OCaml interpreter given a seman-

tics in a specific format.

1 Introduction

Skeletal Semantics [1] is a recent framework designed to describe the se-
mantics of programming languages. More precisely, it provides a syntax to
describe the structural elements of a semantics (sequence, choice, and recur-
sion). For instance, here is a rule for the if constructor.

if xt1 xt2 xt3 :=

[
H (xσ, xt1 , xf1) ;

(
isTrue (xf2) ;H (xσ, xt2 , xo)

isFalse (xf2) ;H (xσ, xt3 , xo)

)]
The if constructor takes three subterms, denoted by the term variables

xt1 , xt2 , and xt3 . To run it, one first recursively evaluate xt1 in the start-
ing environment, denoted by xσ, and bind the result to xf1 , as denoted by
H(xσ, xt1 , xf1). Note that this is just a notation: H simply states that a
recursive evaluation takes place, but it does not give the meaning of this
evaluation. Then we reach a choice between two branches. The first branch
starts with a filter isTrue that checks whether xf1 is true, if so the sec-
ond subterm is recursively evaluated. The second branch is similar, testing
whether xf1 is false, and if so evaluating the third subterm. In both cases,
the result is bound to the special variable xo that should hold the final result.

To formally define a skeletal semantics, one need to provide the following
ingredients:

• term sorts, comprising base sorts that correspond to base terms (inte-
gers, identifiers, . . .) and program sorts that correspond to constructed
terms;

1

• constructors, with their signature that map list of term sorts to pro-
gram sorts;

• flow sorts, that represent the values manipulated during an execution;

• filters, with their signature that map list of sorts to list of sorts;

• for each program sort, a pair of flow sorts indicating the sort of the
state in which it is evaluated and the sort of the result of its evaluation;

• for each constructor, a skeleton, that describes the structure of its
evaluation, as shown above for the if constructor.

The necro tool takes a semantics described in this format and generates
an OCaml interpreter for it.

2 A Syntax for Skeletons

The first contribution of the necro tool is a syntax to describe skeletons. We
describe it through simplified excerpts of an example for a While language.
The full definition is available online.1 We first declare the base sorts and
flow sorts.

type ident type state
type lit type value

We then declare conjointly the program sorts, their constructors, and
their signatures.

type expr = type stat =
| Const of lit | Skip
| Var of ident | Assign of ident * expr
| Plus of expr * expr | Seq of stat * stat
| Equal of expr * expr | If of expr * stat * stat
| Not of expr | While of expr * stat

We next describe filters. Here are the ones we need for the if rule.

val isTrue : value -> unit
val isFalse : value -> unit

1https://gitlab.inria.fr/skeletons/necro/blob/master/test/while_rules.txt

2

https://gitlab.inria.fr/skeletons/necro/blob/master/test/while_rules.txt

We depart from the formalization of [1] by defining one hook per program
sort. We express through annotations what state is expected for this program
sort, and what output it produces. We initially used a single hook, but this
made the generated code quite complex as we needed GADTs to be able to
have different output types.

hook expr (st : state) : expr -> value =
...

hook stat (st : state) : stat -> state =
...
| If (cond, if_true, if_false) ->

b <- expr st cond;
r <- branch

isTrue b;
r <- stat st if_true

or
isFalse b;
r <- stat st if_false

end;
r

...

In our syntax, a skeleton is a sequence of hooks and filters, of the form
output <- name input, and branches, of the form output <- branch ...
or ... or ... end. If a filter returns unit, then the output <- part is
omitted. We no longer have special names such as xσ or xo, instead a hook
takes an input that corresponds to the input environment (st in the example
above), and every skeleton ends with the name of the variable holding the
final result (r in the example above).

3 Generated Code

The general workflow of the necro tool is given in Figure 1. The boxes
in yellow are written by the user, and the boxes in green are generated or
instantiated. First, the user gives the skeletal definition to necro, which
produces type definitions for the syntax of the language, a module type
FLOW comprising the required base sorts, flow sorts, and the filters, and a
functor MakeInterpreter that expects a module of type FLOW containing

3

the implementation of the filters and that returns evaluation functions.2 To
evaluate branching, we return the first branch that completes successfully,
and raise an exception if no branch completes. The user can then use this
module to obtain an interpreter for their language.3

Skeletons Necro Functor

Filters

Interpreter

Figure 1: Workflow

4 Evaluation

We have tested necro with a While language, a call-by-value λ-calculus,
PCF, mini-ML, and a subset of WebAssembly [2]. We are extending it to a
k-CFA analyser: given a skeletal semantics and the definition of constraints
for filters, we generate an OCaml tool that takes as input a program in the
defined semantics and that generates and solves constraints corresponding
to a k-CFA analysis. We plan to demo both tools during the presentation.

References

[1] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt.
Skeletal Semantics and their Interpretations. Proceedings of the ACM on
Programming Languages, 44:1–31, 2019. Companion website with Coq
development: http://skeletons.inria.fr/popl2019/index.html.

[2] Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan
Gohman, Luke Wagner, Alon Zakai, J. F. Bastien, and Michael Hol-
man. Bringing the web up to speed with webassembly. Commun. ACM,
61(12):107–115, 2018.

2https://gitlab.inria.fr/skeletons/necro/blob/master/while.ml
3https://gitlab.inria.fr/skeletons/necro/blob/master/test/test_

interpreter_while.ml

4

http://skeletons.inria.fr/popl2019/index.html
https://gitlab.inria.fr/skeletons/necro/blob/master/while.ml
https://gitlab.inria.fr/skeletons/necro/blob/master/test/test_interpreter_while.ml
https://gitlab.inria.fr/skeletons/necro/blob/master/test/test_interpreter_while.ml

	Introduction
	A Syntax for Skeletons
	Generated Code
	Evaluation

